Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Circ Res ; 134(10): e93-e111, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563147

RESUMO

BACKGROUND: Endothelial activation promotes the release of procoagulant extracellular vesicles and inflammatory mediators from specialized storage granules. Endothelial membrane exocytosis is controlled by phosphorylation. We hypothesized that the absence of PTP1B (protein tyrosine phosphatase 1B) in endothelial cells promotes venous thromboinflammation by triggering endothelial membrane fusion and exocytosis. METHODS: Mice with inducible endothelial deletion of PTP1B (End.PTP1B-KO) underwent inferior vena cava ligation to induce stenosis and venous thrombosis. Primary endothelial cells from transgenic mice and human umbilical vein endothelial cells were used for mechanistic studies. RESULTS: Vascular ultrasound and histology showed significantly larger venous thrombi containing higher numbers of Ly6G (lymphocyte antigen 6 family member G)-positive neutrophils in mice with endothelial PTP1B deletion, and intravital microscopy confirmed the more pronounced neutrophil recruitment following inferior vena cava ligation. RT2 PCR profiler array and immunocytochemistry analysis revealed increased endothelial activation and adhesion molecule expression in primary End.PTP1B-KO endothelial cells, including CD62P (P-selectin) and VWF (von Willebrand factor). Pretreatment with the NF-κB (nuclear factor kappa B) kinase inhibitor BAY11-7082, antibodies neutralizing CD162 (P-selectin glycoprotein ligand-1) or VWF, or arginylglycylaspartic acid integrin-blocking peptides abolished the neutrophil adhesion to End.PTP1B-KO endothelial cells in vitro. Circulating levels of annexin V+ procoagulant endothelial CD62E+ (E-selectin) and neutrophil (Ly6G+) extracellular vesicles were also elevated in End.PTP1B-KO mice after inferior vena cava ligation. Higher plasma MPO (myeloperoxidase) and Cit-H3 (citrullinated histone-3) levels and neutrophil elastase activity indicated neutrophil activation and extracellular trap formation. Infusion of End.PTP1B-KO extracellular vesicles into C57BL/6J wild-type mice most prominently enhanced the recruitment of endogenous neutrophils, and this response was blunted in VWF-deficient mice or by VWF-blocking antibodies. Reduced PTP1B binding and tyrosine dephosphorylation of SNAP23 (synaptosome-associated protein 23) resulting in increased VWF exocytosis and neutrophil adhesion were identified as mechanisms, all of which could be restored by NF-κB kinase inhibition using BAY11-7082. CONCLUSIONS: Our findings show that endothelial PTP1B deletion promotes venous thromboinflammation by enhancing SNAP23 phosphorylation, endothelial VWF exocytosis, and neutrophil recruitment.


Assuntos
Exocitose , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Trombose Venosa , Fator de von Willebrand , Animais , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/deficiência , Humanos , Camundongos , Fator de von Willebrand/metabolismo , Fator de von Willebrand/genética , Trombose Venosa/metabolismo , Trombose Venosa/genética , Trombose Venosa/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/metabolismo , Inflamação/genética , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Veia Cava Inferior/metabolismo , Veia Cava Inferior/patologia , Masculino , Infiltração de Neutrófilos , NF-kappa B/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 44(4): 843-865, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385286

RESUMO

BACKGROUND: Accumulating evidence implicates the activation of G-protein-coupled PARs (protease-activated receptors) by coagulation proteases in the regulation of innate immune responses. METHODS: Using mouse models with genetic alterations of the PAR2 signaling platform, we have explored contributions of PAR2 signaling to infection with coxsackievirus B3, a single-stranded RNA virus provoking multiorgan tissue damage, including the heart. RESULTS: We show that PAR2 activation sustains correlates of severe morbidity-hemodynamic compromise, aggravated hypothermia, and hypoglycemia-despite intact control of the virus. Following acute viral liver injury, canonical PAR2 signaling impairs the restoration process associated with exaggerated type I IFN (interferon) signatures in response to viral RNA recognition. Metabolic profiling in combination with proteomics of liver tissue shows PAR2-dependent reprogramming of liver metabolism, increased lipid droplet storage, and gluconeogenesis. PAR2-sustained hypodynamic compromise, reprograming of liver metabolism, as well as imbalanced IFN responses are prevented in ß-arrestin coupling-deficient PAR2 C-terminal phosphorylation mutant mice. Thus, wiring between upstream proteases and immune-metabolic responses results from biased PAR2 signaling mediated by intracellular recruitment of ß-arrestin. Importantly, blockade of the TF (tissue factor)-FVIIa (coagulation factor VIIa) complex capable of PAR2 proteolysis with the NAPc2 (nematode anticoagulant protein c2) mitigated virus-triggered pathology, recapitulating effects seen in protease cleavage-resistant PAR2 mice. CONCLUSIONS: These data provide insights into a TF-FVIIa signaling axis through PAR2-ß-arrestin coupling that is a regulator of inflammation-triggered tissue repair and hemodynamic compromise in coxsackievirus B3 infection and can potentially be targeted with selective coagulation inhibitors.


Assuntos
Insuficiência de Múltiplos Órgãos , Tromboplastina , Animais , Camundongos , Tromboplastina/metabolismo , beta-Arrestinas/metabolismo , Receptor PAR-2/genética , Fator VIIa/metabolismo , Endopeptidases/metabolismo
4.
Crit Rev Clin Lab Sci ; : 1-18, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38293818

RESUMO

The antiphospholipid syndrome (APS) is an autoimmune disease characterized by the presence of pathogenic antiphospholipid antibodies (aPL). Since approximately 30 years ago, lipid-binding aPL, which do not require a protein cofactor, have been regarded as irrelevant for APS pathogenesis even though anticardiolipin are a diagnostic criterion of APS. In this review, we will summarize the available evidence from in vitro studies, animal models, and epidemiologic studies, which suggest that this concept is no longer tenable. Accordingly, we will only briefly touch on the role of other aPL in APS. This topic has been amply reviewed in detail elsewhere. We will discuss the consequences for laboratory diagnostics and future research required to resolve open questions related to the pathogenic role of different aPL specificities.

5.
Blood ; 143(10): 845-857, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38096370

RESUMO

ABSTRACT: Protease activated receptors (PARs) are cleaved by coagulation proteases and thereby connect hemostasis with innate immune responses. Signaling of the tissue factor (TF) complex with factor VIIa (FVIIa) via PAR2 stimulates extracellular signal-regulated kinase (ERK) activation and cancer cell migration, but functions of cell autonomous TF-FVIIa signaling in immune cells are unknown. Here, we show that myeloid cell expression of FVII but not of FX is crucial for inflammatory cell recruitment to the alveolar space after challenge with the double-stranded viral RNA mimic polyinosinic:polycytidylic acid [Poly(I:C)]. In line with these data, genetically modified mice completely resistant to PAR2 cleavage but not FXa-resistant PAR2-mutant mice are protected from lung inflammation. Poly(I:C)-stimulated migration of monocytes/macrophages is dependent on ERK activation and mitochondrial antiviral signaling (MAVS) but independent of toll-like receptor 3 (TLR3). Monocyte/macrophage-synthesized FVIIa cleaving PAR2 is required for integrin αMß2-dependent migration on fibrinogen but not for integrin ß1-dependent migration on fibronectin. To further dissect the downstream signaling pathway, we generated PAR2S365/T368A-mutant mice deficient in ß-arrestin recruitment and ERK scaffolding. This mutation reduces cytosolic, but not nuclear ERK phosphorylation by Poly(I:C) stimulation, and prevents macrophage migration on fibrinogen but not fibronectin after stimulation with Poly(I:C) or CpG-B, a single-stranded DNA TLR9 agonist. In addition, PAR2S365/T368A-mutant mice display markedly reduced immune cell recruitment to the alveolar space after Poly(I:C) challenge. These results identify TF-FVIIa-PAR2-ß-arrestin-biased signaling as a driver for lung infiltration in response to viral nucleic acids and suggest potential therapeutic interventions specifically targeting TF-VIIa signaling in thrombo-inflammation.


Assuntos
Fator VIIa , Monócitos , Animais , Camundongos , Fator VIIa/metabolismo , Monócitos/metabolismo , Tromboplastina/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Transdução de Sinais/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrinogênio/metabolismo , beta-Arrestinas/metabolismo
6.
Blood ; 143(12): 1167-1180, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38142429

RESUMO

ABSTRACT: Antiphospholipid antibodies (aPL) in primary or secondary antiphospholipid syndrome (APS) are a major cause for acquired thrombophilia, but specific interventions preventing autoimmune aPL development are an unmet clinical need. Although autoimmune aPL cross react with various coagulation regulatory proteins, lipid-reactive aPL, including those derived from patients with COVID-19, recognize the endolysosomal phospholipid lysobisphosphatidic acid presented by the cell surface-expressed endothelial protein C receptor. This specific recognition leads to complement-mediated activation of tissue factor (TF)-dependent proinflammatory signaling and thrombosis. Here, we show that specific inhibition of the TF coagulation initiation complex with nematode anticoagulant protein c2 (NAPc2) prevents the prothrombotic effects of aPL derived from patients with COVID-19 in mice and the aPL-induced proinflammatory and prothrombotic activation of monocytes. The induction of experimental APS is dependent on the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex, and NAPc2 suppresses monocyte endosomal reactive oxygen species production requiring the TF cytoplasmic domain and interferon-α secretion from dendritic cells. Latent infection with murine cytomegalovirus causes TF cytoplasmic domain-dependent development of persistent aPL and circulating phospholipid-reactive B1 cells, which is prevented by short-term intervention with NAPc2 during acute viral infection. In addition, treatment of lupus prone MRL-lpr mice with NAPc2, but not with heparin, suppresses dendritic-cell activation in the spleen, aPL production and circulating phospholipid-reactive B1 cells, and attenuates lupus pathology. These data demonstrate a convergent TF-dependent mechanism of aPL development in latent viral infection and autoimmune disease and provide initial evidence that specific targeting of the TF initiation complex has therapeutic benefits beyond currently used clinical anticoagulant strategies.


Assuntos
Síndrome Antifosfolipídica , COVID-19 , Viroses , Humanos , Animais , Camundongos , Anticorpos Antifosfolipídeos , Tromboplastina/metabolismo , Camundongos Endogâmicos MRL lpr , Síndrome Antifosfolipídica/complicações , Fosfolipídeos , Anticoagulantes , COVID-19/complicações , Viroses/complicações
7.
Proc Natl Acad Sci U S A ; 120(40): e2215421120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37756334

RESUMO

Externalized histones erupt from the nucleus as extracellular traps, are associated with several acute and chronic lung disorders, but their implications in the molecular pathogenesis of interstitial lung disease are incompletely defined. To investigate the role and molecular mechanisms of externalized histones within the immunologic networks of pulmonary fibrosis, we studied externalized histones in human and animal bronchoalveolar lavage (BAL) samples of lung fibrosis. Neutralizing anti-histone antibodies were administered in bleomycin-induced fibrosis of C57BL/6 J mice, and subsequent studies used conditional/constitutive knockout mouse strains for TGFß and IL-27 signaling along with isolated platelets and cultured macrophages. We found that externalized histones (citH3) were significantly (P < 0.01) increased in cell-free BAL fluids of patients with idiopathic pulmonary fibrosis (IPF; n = 29) as compared to healthy controls (n = 10). The pulmonary sources of externalized histones were Ly6G+CD11b+ neutrophils and nonhematopoietic cells after bleomycin in mice. Neutralizing monoclonal anti-histone H2A/H4 antibodies reduced the pulmonary collagen accumulation and hydroxyproline concentration. Histones activated platelets to release TGFß1, which signaled through the TGFbRI/TGFbRII receptor complex on LysM+ cells to antagonize macrophage-derived IL-27 production. TGFß1 evoked multiple downstream mechanisms in macrophages, including p38 MAPK, tristetraprolin, IL-10, and binding of SMAD3 to the IL-27 promotor regions. IL-27RA-deficient mice displayed more severe collagen depositions suggesting that intact IL-27 signaling limits fibrosis. In conclusion, externalized histones inactivate a safety switch of antifibrotic, macrophage-derived IL-27 by boosting platelet-derived TGFß1. Externalized histones are accessible to neutralizing antibodies for improving the severity of experimental pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Interleucina-27 , Humanos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Histonas , Plaquetas , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética
9.
Nat Metab ; 5(7): 1174-1187, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37414930

RESUMO

The gut microbiota influences intestinal barrier integrity through mechanisms that are incompletely understood. Here we show that the commensal microbiota weakens the intestinal barrier by suppressing epithelial neuropilin-1 (NRP1) and Hedgehog (Hh) signaling. Microbial colonization of germ-free mice dampens signaling of the intestinal Hh pathway through epithelial Toll-like receptor (TLR)-2, resulting in decreased epithelial NRP1 protein levels. Following activation via TLR2/TLR6, epithelial NRP1, a positive-feedback regulator of Hh signaling, is lysosomally degraded. Conversely, elevated epithelial NRP1 levels in germ-free mice are associated with a strengthened gut barrier. Functionally, intestinal epithelial cell-specific Nrp1 deficiency (Nrp1ΔIEC) results in decreased Hh pathway activity and a weakened gut barrier. In addition, Nrp1ΔIEC mice have a reduced density of capillary networks in their small intestinal villus structures. Collectively, our results reveal a role for the commensal microbiota and epithelial NRP1 signaling in the regulation of intestinal barrier function through postnatal control of Hh signaling.


Assuntos
Proteínas Hedgehog , Neuropilina-1 , Camundongos , Animais , Neuropilina-1/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Células Epiteliais/metabolismo , Bactérias/metabolismo
10.
J Thromb Haemost ; 21(10): 2797-2810, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37481073

RESUMO

BACKGROUND: Recurrent events frequently occur after venous thromboembolism (VTE) and remain difficult to predict based on established genetic, clinical, and proteomic contributors. The role of circulating microRNAs (miRNAs) has yet to be explored in detail. OBJECTIVES: To identify circulating miRNAs predictive of recurrent VTE or death, and to interpret their mechanistic involvement. METHODS: Data from 181 participants of a cohort study of acute VTE and 302 individuals with a history of VTE from a population-based cohort were investigated. Next-generation sequencing was performed on EDTA plasma samples to detect circulating miRNAs. The endpoint of interest was recurrent VTE or death. Penalized regression was applied to identify an outcome-relevant miRNA signature, and results were validated in the population-based cohort. The involvement of miRNAs in coregulatory networks was assessed using principal component analysis, and the associated clinical and molecular phenotypes were investigated. Mechanistic insights were obtained from target gene and pathway enrichment analyses. RESULTS: A total of 1950 miRNAs were detected across cohorts after postprocessing. In the discovery cohort, 50 miRNAs were associated with recurrent VTE or death (cross-validated C-index, 0.65). A weighted miRNA score predicted outcome over an 8-year follow-up period (HRSD, 2.39; 95% CI, 1.98-2.88; P < .0001). The independent validation cohort validated 20 miRNAs (ORSD for score, 3.47; 95% CI, 2.37-5.07; P < .0001; cross-validated-area under the curve, 0.61). Principal component analysis revealed 5 miRNA networks with distinct relationships to clinical phenotype and outcome. Mapping of target genes indicated regulation via transcription factors and kinases involved in signaling pathways associated with fibrinolysis. CONCLUSION: Circulating miRNAs predicted the risk of recurrence or death after VTE over several years, both in the acute and chronic phases.


Assuntos
MicroRNA Circulante , MicroRNAs , Tromboembolia Venosa , Humanos , MicroRNA Circulante/genética , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/genética , Estudos de Coortes , Proteômica , MicroRNAs/genética
11.
Arterioscler Thromb Vasc Biol ; 43(8): 1572-1582, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37381988

RESUMO

BACKGROUND: Thrombo-inflammation is central to COVID-19-associated coagulopathy. TF (tissue factor), a driver of disordered coagulation and inflammation in viral infections, may be a therapeutic target in COVID-19. The safety and efficacy of the novel TF inhibitor rNAPc2 (recombinant nematode anticoagulation protein c2) in COVID-19 are unknown. METHODS: ASPEN-COVID-19 was an international, randomized, open-label, active comparator clinical trial with blinded end point adjudication. Hospitalized patients with COVID-19 and elevated D-dimer levels were randomized 1:1:2 to lower or higher dose rNAPc2 on days 1, 3, and 5 followed by heparin on day 8 or to heparin per local standard of care. In comparisons of the pooled rNAPc2 versus heparin groups, the primary safety end point was major or nonmajor clinically relevant International Society of Thrombosis and Haemostasis bleeding through day 8. The primary efficacy end point was proportional change in D-dimer concentration from baseline to day 8, or discharge if before day 8. Patients were followed for 30 days. RESULTS: Among 160 randomized patients, median age was 54 years, 43.1% were female, and 38.8% had severe baseline COVID-19. There were no significant differences between rNAPc2 and heparin in bleeding or other safety events. Overall, median change in D-dimer was -16.8% (interquartile range, -45.7 to 36.8; P=0.41) with rNAPc2 treatment and -11.2% (-36.0 to 34.4; P=0.91) with heparin (Pintergroup=0.47). In prespecified analyses, in severely ill patients, D-dimer levels tended to increase more within the heparin (median, 29.0% [-14.9 to 145.2]; P=0.02) than the rNAPc2 group (median, 25.9% [-49.1 to 136.4]; P=0.14; Pintergroup=0.96); in mildly ill patients, D-dimer levels were reduced within each group with a numerically greater reduction with rNAPc2 versus heparin (rNAPc2 median, -32.7% [-44.7 to 4.3]; P=0.007 and heparin median, -16.8% [-36.0 to 0.5]; P=0.008, Pintergroup=0.34). CONCLUSIONS: rNAPc2 treatment in hospitalized patients with COVID-19 was well tolerated without excess bleeding or serious adverse events but did not significantly reduce D-dimer more than heparin at day 8. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT04655586.


Assuntos
Antifibrinolíticos , Transtornos da Coagulação Sanguínea , COVID-19 , Produtos de Degradação da Fibrina e do Fibrinogênio , Tromboembolia Venosa , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticoagulantes/efeitos adversos , Hemorragia/induzido quimicamente , Heparina/efeitos adversos , Inflamação/induzido quimicamente , Tromboplastina
12.
Gut Microbes ; 15(1): 2205425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37131291

RESUMO

Emerging evidence implicates microbial proteolytic activity in ulcerative colitis (UC), but whether it also plays a role in Crohn's disease (CD) remains unclear. We investigated the effects of colonizing adult and neonatal germ-free C57BL/6 mice with CD microbiota, selected based on high (CD-HPA) or low fecal proteolytic activity (CD-LPA), or microbiota from healthy controls with LPA (HC-LPA) or HPA (HC-HPA). We then investigated colitogenic mechanisms in gnotobiotic C57BL/6, and in mice with impaired Nucleotide-binding Oligomerization Domain-2 (NOD2) and Protease-Activated Receptor 2 (PAR2) cleavage resistant mice (Nod2-/-; R38E-PAR2 respectively). At sacrifice, total fecal proteolytic, elastolytic, and mucolytic activity were analyzed. Microbial community and predicted function were assessed by 16S rRNA gene sequencing and PICRUSt2. Immune function and colonic injury were investigated by inflammatory gene expression (NanoString) and histology. Colonization with HC-LPA or CD-LPA lowered baseline fecal proteolytic activity in germ-free mice, which was paralleled by lower acute inflammatory cell infiltrate. CD-HPA further increased proteolytic activity compared with germ-free mice. CD-HPA mice had lower alpha diversity, distinct microbial profiles and higher fecal proteolytic activity compared with CD-LPA. C57BL/6 and Nod2-/- mice, but not R38E-PAR2, colonized with CD-HPA had higher colitis severity than those colonized with CD-LPA. Our results indicate that CD proteolytic microbiota is proinflammatory, increasing colitis severity through a PAR2 pathway.


Assuntos
Colite Ulcerativa , Colite , Doença de Crohn , Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Camundongos Endogâmicos C57BL , Receptor PAR-2/genética , RNA Ribossômico 16S/genética , Inflamação , Serina Proteases
13.
Nat Cardiovasc Res ; 2(4): 368-382, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37206993

RESUMO

The activation of platelets and coagulation at vascular injury sites is crucial for haemostasis but can promote thrombosis and inflammation in vascular pathologies. Here, we delineate an unexpected spatio-temporal control mechanism of thrombin activity that is platelet orchestrated and locally limits excessive fibrin formation after initial haemostatic platelet deposition. During platelet activation, the abundant platelet glycoprotein (GP) V is cleaved by thrombin. We demonstrate with genetic and pharmacological approaches that thrombin-mediated shedding of GPV does not primarily regulate platelet activation in thrombus formation, but rather has a distinct function after platelet deposition and specifically limits thrombin-dependent generation of fibrin, a crucial mediator of vascular thrombo-inflammation. Genetic or pharmacologic defects in haemostatic platelet function are unexpectedly attenuated by specific blockade of GPV shedding, indicating that the spatio-temporal control of thrombin-dependent fibrin generation also represents a potential therapeutic target to improve haemostasis.

14.
Blood Adv ; 7(11): 2388-2400, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-36920782

RESUMO

Cancer enhances the risk of venous thromboembolism, but a hypercoagulant microenvironment also promotes cancer progression. Although anticoagulants have been suggested as a potential anticancer treatment, clinical studies on the effect of such modalities on cancer progression have not yet been successful for unknown reasons. In normal physiology, complex formation between the subendothelial-expressed tissue factor (TF) and the blood-borne liver-derived factor VII (FVII) results in induction of the extrinsic coagulation cascade and intracellular signaling via protease-activated receptors (PARs). In cancer, TF is overexpressed and linked to poor prognosis. Here, we report that increased levels of FVII are also observed in breast cancer specimens and are associated with tumor progression and metastasis to the liver. In breast cancer cell lines, tumor-expressed FVII drives changes reminiscent of epithelial-to-mesenchymal transition (EMT), tumor cell invasion, and expression of the prometastatic genes, SNAI2 and SOX9. In vivo, tumor-expressed FVII enhanced tumor growth and liver metastasis. Surprisingly, liver-derived FVII appeared to inhibit metastasis. Finally, tumor-expressed FVII-induced prometastatic gene expression independent of TF but required a functional endothelial protein C receptor, whereas recombinant activated FVII acting via the canonical TF:PAR2 pathway inhibited prometastatic gene expression. Here, we propose that tumor-expressed FVII and liver-derived FVII have opposing effects on EMT and metastasis.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Transdução de Sinais , Tromboplastina/genética , Tromboplastina/metabolismo , Microambiente Tumoral
15.
Thromb Haemost ; 123(8): 808-839, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36913975

RESUMO

The Fourth Maastricht Consensus Conference on Thrombosis included the following themes. Theme 1: The "coagulome" as a critical driver of cardiovascular disease. Blood coagulation proteins also play divergent roles in biology and pathophysiology, related to specific organs, including brain, heart, bone marrow, and kidney. Four investigators shared their views on these organ-specific topics. Theme 2: Novel mechanisms of thrombosis. Mechanisms linking factor XII to fibrin, including their structural and physical properties, contribute to thrombosis, which is also affected by variation in microbiome status. Virus infection-associated coagulopathies perturb the hemostatic balance resulting in thrombosis and/or bleeding. Theme 3: How to limit bleeding risks: insights from translational studies. This theme included state-of-the-art methodology for exploring the contribution of genetic determinants of a bleeding diathesis; determination of polymorphisms in genes that control the rate of metabolism by the liver of P2Y12 inhibitors, to improve safety of antithrombotic therapy. Novel reversal agents for direct oral anticoagulants are discussed. Theme 4: Hemostasis in extracorporeal systems: the value and limitations of ex vivo models. Perfusion flow chamber and nanotechnology developments are developed for studying bleeding and thrombosis tendencies. Vascularized organoids are utilized for disease modeling and drug development studies. Strategies for tackling extracorporeal membrane oxygenation-associated coagulopathy are discussed. Theme 5: Clinical dilemmas in thrombosis and antithrombotic management. Plenary presentations addressed controversial areas, i.e., thrombophilia testing, thrombosis risk assessment in hemophilia, novel antiplatelet strategies, and clinically tested factor XI(a) inhibitors, both possibly with reduced bleeding risk. Finally, COVID-19-associated coagulopathy is revisited.


Assuntos
Transtornos da Coagulação Sanguínea , COVID-19 , Trombose , Humanos , Anticoagulantes/uso terapêutico , Coagulação Sanguínea , Hemostasia , Transtornos da Coagulação Sanguínea/tratamento farmacológico , Hemorragia/tratamento farmacológico
16.
Cardiovasc Res ; 119(6): 1416-1426, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-36702626

RESUMO

AIMS: Traffic noise may play an important role in the development and deterioration of ischaemic heart disease. Thus, we sought to determine the mechanisms of cardiovascular dysfunction and inflammation induced by aircraft noise in a mouse model of myocardial infarction (MI) and in humans with incident MI. METHODS AND RESULTS: C57BL/6J mice were exposed to noise alone (average sound pressure level 72 dB; peak level 85 dB) for up to 4 days, resulting in pro-inflammatory aortic gene expression in the myeloid cell adhesion/diapedesis pathways. The noise alone promoted adhesion and infiltration of inflammatory myeloid cells in vascular/cardiac tissue, paralleled by an increased percentage of leucocytes with a pro-inflammatory, reactive oxygen species (ROS)-producing phenotype and augmented expression of nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase type 2 (Nox2)/phosphorylation of nuclear factor 'kappa light chain enhancer' of activated B-cells (phospho-NFκB) in peripheral blood. Ligation of the left anterior descending artery resulted in worsening of cardiac function, pronounced cardiac infiltration of CD11b+ myeloid cells and Ly6Chigh monocytes, and induction of interleukin (IL) 6, IL-1ß, CCL-2, and Nox2, being aggravated by noise exposure prior to MI. MI induced stronger endothelial dysfunction and more pronounced increases in vascular ROS in animals preconditioned with noise. Participants of the population-based Gutenberg Health Cohort Study (median follow-up:11.4 years) with incident MI revealed elevated C-reactive protein at baseline and worse left ventricular ejection fraction (LVEF) after MI in case of a history of noise exposure and subsequent annoyance development. CONCLUSION: Aircraft noise exposure before MI substantially amplifies subsequent cardiovascular inflammation and aggravates ischaemic heart failure, facilitated by a pro-inflammatory vascular conditioning. Our translational results suggest that measures to reduce environmental noise exposure will be helpful in improving the clinical outcome of subjects with MI.Key questionKey finding Take-home-MessageAircraft noise exposure before MI substantially amplifies cardiovascular inflammation and aggravates cardiac impairment after MI.


Assuntos
Infarto do Miocárdio , Função Ventricular Esquerda , Animais , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Estudos de Coortes , Volume Sistólico , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Inflamação , Aeronaves
17.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36548062

RESUMO

Despite major advances in acute interventions for myocardial infarction (MI), adverse cardiac remodeling and excess fibrosis after MI causing ischemic heart failure (IHF) remain a leading cause of death worldwide. Here we identify a profibrotic coagulation signaling pathway that can be targeted for improved cardiac function following MI with persistent ischemia. Quantitative phosphoproteomics of cardiac tissue revealed an upregulated mitogen-activated protein kinase (MAPK) pathway in human IHF. Intervention in this pathway with trametinib improves myocardial function and prevents fibrotic remodeling in a murine model of non-reperfused MI. MAPK activation in MI requires myeloid cell signaling of protease-activated receptor 2 linked to the cytoplasmic domain of the coagulation initiator tissue factor (TF). They act upstream of pro-oxidant NOX2 NADPH oxidase, ERK1/2 phosphorylation, and activation of profibrotic TGF-ß1. Specific targeting with the TF inhibitor nematode anticoagulant protein c2 (NAPc2) starting 1 day after established experimental MI averts IHF. Increased TF cytoplasmic domain phosphorylation in circulating monocytes from patients with subacute MI identifies a potential thromboinflammatory biomarker reflective of increased risk for IHF and suitable for patient selection to receive targeted TF inhibition therapy.


Assuntos
Insuficiência Cardíaca , Células Mieloides , Infarto do Miocárdio , Animais , Humanos , Camundongos , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células Mieloides/metabolismo , Infarto do Miocárdio/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Remodelação Ventricular
18.
Heliyon ; 8(11): e11740, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36439760

RESUMO

Cells of the innate immune system, including monocytes and neutrophils, are key players in the process of venous thrombosis. T lymphocytes have recently been implicated in venous thrombus resolution but the role of B lymphocytes in thrombosis is unknown. The present study was conducted to address this question using a mouse model of partial ligation of the inferior vena cava. Although only a very low number of B cells was found in the venous thrombi of wild-type mice, B cell-deficient JHT mutant mice developed larger venous thrombi than the wild-type controls. Consistent with enhanced thrombogenesis, increased neutrophil counts were found in the circulating blood and in the thrombi of B cell-deficient mice. One of the mechanisms by which neutrophils contribute to venous thrombosis is the formation of neutrophil extracellular traps (NETs). In agreement, higher quantities of NETs were observed in the thrombi of B cell-deficient mice. In vitro assays showed no difference in the NET building capacity of the isolated neutrophils between B cell-deficient and wild-type mice, indicating that the enhanced NET formation in the thrombi of B cell-deficient mice is attributable to the increased number of circulating neutrophils in these animals. Furthermore, increased concentration of the clot-stabilizing macromolecule fibrinogen was detected in the plasma of B cell-deficient mice. In conclusion, B cell-deficiency in mice indirectly promotes venous thrombosis by increasing neutrophil numbers and elevating fibrinogen levels.

19.
Proc Natl Acad Sci U S A ; 119(48): e2212659119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409883

RESUMO

Platelets play a role not only in hemostasis and thrombosis, but also in inflammation and innate immunity. We previously reported that an activated form of tyrosyl-tRNA synthetase (YRSACT) has an extratranslational activity that enhances megakaryopoiesis and platelet production in mice. Here, we report that YRSACT mimics inflammatory stress inducing a unique megakaryocyte (MK) population with stem cell (Sca1) and myeloid (F4/80) markers through a mechanism dependent on Toll-like receptor (TLR) activation and type I interferon (IFN-I) signaling. This mimicry of inflammatory stress by YRSACT was studied in mice infected by lymphocytic choriomeningitis virus (LCMV). Using Sca1/EGFP transgenic mice, we demonstrated that IFN-I induced by YRSACT or LCMV infection suppressed normal hematopoiesis while activating an alternative pathway of thrombopoiesis. Platelets of inflammatory origin (Sca1/EGFP+) were a relevant proportion of those circulating during recovery from thrombocytopenia. Analysis of these "inflammatory" MKs and platelets suggested their origin in myeloid/MK-biased hematopoietic stem cells (HSCs) that bypassed the classical MK-erythroid progenitor (MEP) pathway to replenish platelets and promote recovery from thrombocytopenia. Notably, inflammatory platelets displayed enhanced agonist-induced activation and procoagulant activities. Moreover, myeloid/MK-biased progenitors and MKs were mobilized from the bone marrow, as evidenced by their presence in the lung microvasculature within fibrin-containing microthrombi. Our results define the function of YRSACT in platelet generation and contribute to elucidate platelet alterations in number and function during viral infection.


Assuntos
Ataxias Espinocerebelares , Trombocitopenia , Trombose , Tirosina-tRNA Ligase , Viroses , Camundongos , Animais , Trombopoese , Camundongos Transgênicos
20.
Thromb Res ; 220: 48-59, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265413

RESUMO

INTRODUCTION: Protein disulfide isomerase (PDI) contributes to tissue factor (TF) regulation in monocytes. While bacitracin and quercetin-3-rutinoside mitigate myeloid TF production, the effect of PACMA-31, a more specific PDI inhibitor with distinct pharmacologic properties, remains unclear. MATERIALS AND METHODS: Lipopolysaccharide (LPS) stimulation of peripheral blood mononuclear cells (PBMCs) or citrate-anticoagulated whole blood was carried out in the presence of PACMA-31 or DMSO vehicle before monocytes were analyzed for TF expression, including antigen, procoagulant activity (PCA) and mRNA, release of IL-6 and TNFα, and LPS-induced signaling pathways. RESULTS: While PACMA-31 alone had no effect, coincubation with LPS and PACMA-31 (25 µM) enhanced LPS-induced monocyte TF production in whole blood. The effect was at least partially regulated on the transcriptional level and could not be explained by increased phosphatidylserine membrane exposure. In contrast, the same PACMA-31 concentrations were cytotoxic in isolated PBMCs. A lower dose of PACMA-31, however, restored the stimulating effect by enhancing IκB-NFκB signaling that also increased the release of IL-6 and TNFα. The protease-activated receptor 2 (PAR2) inhibitor ENMD547 but not TF antibody 10H10 or factor Xa inhibitor rivaroxaban prevented the stimulatory effect of PACMA-31 on inflammatory monocytes. In sharp contrast, short time incubation of LPS-stimulated PBMCs with 25 µM PACMA-31 was non-cytotoxic and significantly inhibited cellular TF PCA but not surface antigen expression. CONCLUSIONS: PACMA-31 regulates monocyte TF in a concentration-dependent manner by opposing transcriptional and posttranscriptional mechanisms. While low concentrations of PACMA-31 augment monocyte TF production by amplifying LPS-dependent PAR2 signaling, high concentrations convert monocyte TF into its non-coagulant state.


Assuntos
Monócitos , Tromboplastina , Humanos , Tromboplastina/genética , Tromboplastina/metabolismo , Monócitos/metabolismo , Isomerases de Dissulfetos de Proteínas , Fator de Necrose Tumoral alfa/metabolismo , Leucócitos Mononucleares , Lipopolissacarídeos/farmacologia , Interleucina-6/metabolismo , Interleucina-6/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA